基于自动微分的全连接神经网络 - DNN

是拿来实现 XOR 的拟合的,有时候可能是参数初始化的问题,导致无法收敛 (我感觉我梯度计算没问题)

原理

大致上是将网络映射到一张计算图上,基于计算图的自动微分,由拓扑排序确定求导和计算顺序。

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using ll = long long;

class Function {
public:
virtual ld exec(vector<ld> &inputs) = 0;
virtual vector<ld> grad(vector<ld> &inputs) = 0;
virtual ~Function() = default;
virtual void bp(ld grad) {};
virtual void initializeWeights(size_t outputLength) = 0;
};

class ComputeNode {
public:
size_t inputLength = 0;
ld value = 0;
vector<ld> pfpx;
vector<ComputeNode *> nextNodes;
vector<ComputeNode *> operands;
Function *fp = nullptr;
size_t id = 999;
ld grad = 0;
ComputeNode(size_t _inputLength, Function *_fp, size_t _id)
: inputLength(_inputLength), fp(_fp), id(_id) {}
ComputeNode(ld val, size_t _id) : value(val), id(_id) {};
virtual ~ComputeNode() {
if (fp != nullptr) delete fp;
};
virtual ld compute();
};

ld ComputeNode::compute() {
if (inputLength == 0) return value;
vector<ld> inputs;
for (size_t i = 0; i < inputLength; i++) {
inputs.push_back(operands[i]->value);
}
value = fp->exec(inputs);
pfpx = fp->grad(inputs);
return value;
}

class ComputationalGraph {
public:
vector<ComputeNode *> Nodes;
vector<ComputeNode *> outNodes;
vector<ComputeNode *> inNodes;
vector<ComputeNode *> topo_forward;
vector<ComputeNode *> topo_backward;
ComputationalGraph() = default;
ComputeNode *addNode(size_t inputLength, Function *fp);
ComputeNode *addNode(ld value);
void bindNode(vector<ComputeNode *> ops, ComputeNode *ComputeNodePtr);
vector<ld> compute();
vector<ld> grad();
vector<ld> grad(vector<ld> &outputGrad);
void clearGrad() {
for (auto nd : Nodes) nd->grad = 0;
}
virtual ~ComputationalGraph() {
for (auto &it : Nodes) delete it;
}
};

ComputeNode *ComputationalGraph::addNode(size_t inputLength, Function *fp) {
ComputeNode *nd = new ComputeNode(inputLength, fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

ComputeNode *ComputationalGraph::addNode(ld value) {
ComputeNode *nd = new ComputeNode(value, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void ComputationalGraph::bindNode(vector<ComputeNode *> ops,
ComputeNode *ComputeNodePtr) {
for (auto nd : ops) {
ComputeNodePtr->operands.push_back(nd);
nd->nextNodes.push_back(ComputeNodePtr);
}
}

vector<ld> ComputationalGraph::compute() {
if (!topo_forward.size()) {
map<ComputeNode *, ll> indegree;
bool flag = false;
for (auto nd : Nodes) {
for (auto nnd : nd->nextNodes) {
indegree[nnd]++;
}
}
if (outNodes.size() != 0) flag = true;
queue<ComputeNode *> q;
if (inNodes.size() == 0) {
for (auto nd : Nodes)
if (indegree[nd] == 0) inNodes.push_back(nd);
sort(inNodes.begin(), inNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
for (auto nd : inNodes) q.push(nd);
while (!q.empty()) {
auto nd = q.front();
q.pop();
topo_forward.push_back(nd);
for (auto nnd : nd->nextNodes) {
--indegree[nnd];
if (indegree[nnd] == 0) q.push(nnd);
}
if (nd->nextNodes.size() == 0 && !flag) {
outNodes.push_back(nd);
}
}
if (!flag) {
sort(outNodes.begin(), outNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
topo_backward = topo_forward;
reverse(topo_backward.begin(), topo_backward.end());
}
for (auto nd : topo_forward) {
nd->compute();
}
vector<ld> res;
for (auto nd : outNodes) {
res.push_back(nd->value);
}
return res;
}

vector<ld> ComputationalGraph::grad(vector<ld> &outputGrad) {
clearGrad();
for (size_t i = 0; i < outNodes.size(); i++)
outNodes[i]->grad = outputGrad[i];
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

vector<ld> ComputationalGraph::grad() {
clearGrad();
for (auto nd : outNodes) nd->grad = 1;
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

class Liner : public Function {
public:
vector<ld> W;
vector<ld> _inputs;
Liner(size_t inputLength) {
for (size_t i = 0; i <= inputLength; i++) {
W.push_back(ld(rand()) / RAND_MAX);
}
}
void initializeWeights(size_t outputLength) {
for (auto &it : W) {
double limit = std::sqrt(6.0 / (W.size() + outputLength));
it = (ld(rand()) / RAND_MAX) * 2 * limit - limit;
}
W[W.size() - 1] = 0.0;
}
ld exec(vector<ld> &inputs) {
_inputs = inputs;
_inputs.push_back(1); // for bias, extra input unit 1
ld res = 0;
for (size_t i = 0; i < W.size(); i++) {
res += _inputs[i] * W[i];
}
return res;
}
vector<ld> grad(vector<ld> &inputs) {
vector<ld> d;
for (size_t i = 0; i < inputs.size(); i++) {
d.push_back(W[i]);
}
return d;
}
void bp(ld grad) {
for (size_t i = 0; i < W.size(); i++) {
W[i] -= grad * _inputs[i];
}
}
};

class Activation : Function {
public:
ld input;
Activation() = default;
void bp(ld grad) {}
void initializeWeights(size_t outputLength) {}
virtual Activation *newInstance() = 0;
};

class Sigmoid : public Activation {
public:
Sigmoid() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 1.0 / (1 + exp(-input));
}
vector<ld> grad(vector<ld> &inputs) {
return {exec(inputs) * (1 - exec(inputs))};
}
Sigmoid *newInstance() { return new Sigmoid(); }
};

class Neuron : public ComputeNode {
public:
Neuron(size_t inputLength, size_t id)
: ComputeNode(inputLength, new Liner(inputLength), id) {};
Neuron(size_t inputLength, Function *fp, size_t id)
: ComputeNode(inputLength, fp, id) {};
Neuron(size_t id) : ComputeNode(0, id) {}
void input(ld v) { // for input node only
value = v;
}
void bp(ld lr);
};

void Neuron::bp(ld lr) {
if (fp != nullptr) fp->bp(grad * lr);
}

class DNN : public ComputationalGraph {
public:
DNN() = default;
vector<vector<Neuron *>> Layers;
void addLayer(size_t outputLength);
Neuron *addNeuron(size_t inputLength);
Neuron *addNeuron();
Neuron *addNeuron(Activation *fp);
void bp(ld lr, vector<ld> &labels);
vector<ld> eval(vector<ld> &inputs);
void training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels);
void addLayer(Activation *fp); // activation layer
};

Neuron *DNN::addNeuron() {
Neuron *nd = new Neuron(Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(Activation *fp) {
Neuron *nd = new Neuron(1, (Function *)fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(size_t inputLength) {
Neuron *nd = new Neuron(inputLength, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void DNN::addLayer(size_t outputLength) {
size_t inputLength = Layers.size() > 0 ? Layers[Layers.size() - 1].size() : 0;
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer;
if (inputLength)
lastLayer = vector<ComputeNode *>(Layers[Layers.size() - 1].begin(),
Layers[Layers.size() - 1].end());
for (size_t i = 0; i < outputLength; i++) {
Neuron *nd = inputLength != 0 ? addNeuron(inputLength) : addNeuron();
if (nd->fp != nullptr) nd->fp->initializeWeights(outputLength);
Layer.push_back(nd);
if (inputLength) bindNode(lastLayer, nd);
}
Layers.push_back(Layer);
}

void DNN::addLayer(Activation *fp) {
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer = vector<ComputeNode *>(
Layers[Layers.size() - 1].begin(), Layers[Layers.size() - 1].end());
for (size_t i = 0; i < lastLayer.size(); i++) {
Neuron *nd = addNeuron(fp->newInstance());
Layer.push_back(nd);
bindNode({lastLayer[i]}, nd);
}
Layers.push_back(Layer);
}

void DNN::bp(ld lr, vector<ld> &outputGrad) {
grad(outputGrad);
Neuron *n;
for (auto nd : Nodes) {
n = (Neuron *)nd;
n->bp(lr);
}
}

vector<ld> DNN::eval(vector<ld> &inputs) {
for (size_t i = 0; i < inputs.size(); i++) {
Layers[0][i]->input(inputs[i]);
}
return compute();
}

void DNN::training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels) {
for (size_t i = 0; i < epoch; i++) {
vector<ld> grad(outNodes.size(), 0);
for (size_t t = 0; t < inputs.size(); t++) {
vector<ld> res = eval(inputs[t]);
for (size_t j = 0; j < labels[t].size(); j++) {
grad[j] = 2 * (res[j] - labels[t][j]);
// grad[j] += 2 * (res[j] - labels[t][j]) / inputs.size();
}
bp(lr, grad);
}
// ld sum = 0;
// for (auto it : grad) sum += it;
// sum /= grad.size();
// cout << i + 1 << " " << sum << endl;
// bp(lr, grad);
}
}

int main() {
srand(time(nullptr));
DNN net;
Sigmoid *sig = new Sigmoid;
net.addLayer(2);
net.addLayer(2);
net.addLayer(sig);
net.addLayer(1);
vector<vector<ld>> inputs = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
vector<vector<ld>> labels = {{0}, {1}, {1}, {0}};
cout << "[before training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}
net.training(0.1, 10000, inputs, labels);
cout << "[after training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}
delete sig;
return 0;
}

UPD

找AI要了份手写的梯度下降代码,对这个俩层网络验证了一下,根据结果来看,梯度算的倒是没毛病,看来真是参数初始化的问题了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using ll = long long;

class Function {
public:
virtual ld exec(vector<ld> &inputs) = 0;
virtual vector<ld> grad(vector<ld> &inputs) = 0;
virtual ~Function() = default;
virtual void bp(ld grad) {};
virtual void initializeWeights(size_t outputLength) = 0;
};

class ComputeNode {
public:
size_t inputLength = 0;
ld value = 0;
vector<ld> pfpx;
vector<ComputeNode *> nextNodes;
vector<ComputeNode *> operands;
Function *fp = nullptr;
size_t id = 999;
ld grad = 0;
ComputeNode(size_t _inputLength, Function *_fp, size_t _id)
: inputLength(_inputLength), fp(_fp), id(_id) {}
ComputeNode(ld val, size_t _id) : value(val), id(_id) {};
virtual ~ComputeNode() {
if (fp != nullptr) delete fp;
};
virtual ld compute();
};

ld ComputeNode::compute() {
if (inputLength == 0) return value;
vector<ld> inputs;
for (size_t i = 0; i < inputLength; i++) {
inputs.push_back(operands[i]->value);
}
value = fp->exec(inputs);
pfpx = fp->grad(inputs);
return value;
}

class ComputationalGraph {
public:
vector<ComputeNode *> Nodes;
vector<ComputeNode *> outNodes;
vector<ComputeNode *> inNodes;
vector<ComputeNode *> topo_forward;
vector<ComputeNode *> topo_backward;
ComputationalGraph() = default;
ComputeNode *addNode(size_t inputLength, Function *fp);
ComputeNode *addNode(ld value);
void bindNode(vector<ComputeNode *> ops, ComputeNode *ComputeNodePtr);
vector<ld> compute();
vector<ld> grad();
vector<ld> grad(vector<ld> &outputGrad);
void clearGrad() {
for (auto nd : Nodes) nd->grad = 0;
}
virtual ~ComputationalGraph() {
for (auto &it : Nodes) delete it;
}
};

ComputeNode *ComputationalGraph::addNode(size_t inputLength, Function *fp) {
ComputeNode *nd = new ComputeNode(inputLength, fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

ComputeNode *ComputationalGraph::addNode(ld value) {
ComputeNode *nd = new ComputeNode(value, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void ComputationalGraph::bindNode(vector<ComputeNode *> ops,
ComputeNode *ComputeNodePtr) {
for (auto nd : ops) {
ComputeNodePtr->operands.push_back(nd);
nd->nextNodes.push_back(ComputeNodePtr);
}
}

vector<ld> ComputationalGraph::compute() {
if (!topo_forward.size()) {
map<ComputeNode *, ll> indegree;
bool flag = false;
for (auto nd : Nodes) {
for (auto nnd : nd->nextNodes) {
indegree[nnd]++;
}
}
if (outNodes.size() != 0) flag = true;
queue<ComputeNode *> q;
if (inNodes.size() == 0) {
for (auto nd : Nodes)
if (indegree[nd] == 0) inNodes.push_back(nd);
sort(inNodes.begin(), inNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
for (auto nd : inNodes) q.push(nd);
while (!q.empty()) {
auto nd = q.front();
q.pop();
topo_forward.push_back(nd);
for (auto nnd : nd->nextNodes) {
--indegree[nnd];
if (indegree[nnd] == 0) q.push(nnd);
}
if (nd->nextNodes.size() == 0 && !flag) {
outNodes.push_back(nd);
}
}
if (!flag) {
sort(outNodes.begin(), outNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
topo_backward = topo_forward;
reverse(topo_backward.begin(), topo_backward.end());
}
for (auto nd : topo_forward) {
nd->compute();
}
vector<ld> res;
for (auto nd : outNodes) {
res.push_back(nd->value);
}
return res;
}

vector<ld> ComputationalGraph::grad(vector<ld> &outputGrad) {
clearGrad();
for (size_t i = 0; i < outNodes.size(); i++)
outNodes[i]->grad = outputGrad[i];
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

vector<ld> ComputationalGraph::grad() {
clearGrad();
for (auto nd : outNodes) nd->grad = 1;
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

class Liner : public Function {
public:
vector<ld> W;
vector<ld> _inputs;
Liner(size_t inputLength) {
for (size_t i = 0; i <= inputLength; i++) {
// W.push_back(ld(rand()) / RAND_MAX);
W.push_back(1+i);
}
}
void initializeWeights(size_t outputLength) {
// for (auto &it : W) {
// double limit = std::sqrt(6.0 / (W.size() - 1 + outputLength));
// it = (ld(rand()) / RAND_MAX) * 2 * limit - limit;
// }
W[W.size() - 1] = 0.0;
}
ld exec(vector<ld> &inputs) {
_inputs = inputs;
_inputs.push_back(1); // for bias, extra input unit 1
ld res = 0;
for (size_t i = 0; i < W.size(); i++) {
res += _inputs[i] * W[i];
}
return res;
}
vector<ld> grad(vector<ld> &inputs) {
vector<ld> d;
for (size_t i = 0; i < inputs.size(); i++) {
d.push_back(W[i]);
}
return d;
}
void bp(ld grad) {
for (size_t i = 0; i < W.size(); i++) {
W[i] -= grad * _inputs[i];
}
}
};

class Activation : Function {
public:
ld input;
Activation() = default;
void bp(ld grad) {}
void initializeWeights(size_t outputLength) {}
virtual Activation *newInstance() = 0;
};

class Sigmoid : public Activation {
public:
Sigmoid() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 1.0 / (1 + exp(-input));
}
vector<ld> grad(vector<ld> &inputs) {
return {exec(inputs) * (1 - exec(inputs))};
}
Sigmoid *newInstance() { return new Sigmoid; }
};

class Sgn : public Activation {
public:
Sgn() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 2.0 / (1 + exp(-input)) - 1;
}
vector<ld> grad(vector<ld> &inputs) {
return {2 * exp(-inputs[0]) /
(2 * exp(-inputs[0]) + (exp(-inputs[0]) * exp(-inputs[0])) + 1)};
}
Sgn *newInstance() { return new Sgn; }
};

class ReLU : public Activation {
public:
ReLU() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return input > 0 ? input : 0;
}
vector<ld> grad(vector<ld> &inputs) { return {ld(inputs[0] >= 0 ? 1 : 0)}; }
ReLU *newInstance() { return new ReLU; }
};

class Neuron : public ComputeNode {
public:
Neuron(size_t inputLength, size_t id)
: ComputeNode(inputLength, new Liner(inputLength), id) {};
Neuron(size_t inputLength, Function *fp, size_t id)
: ComputeNode(inputLength, fp, id) {};
Neuron(size_t id) : ComputeNode(0, id) {}
void input(ld v) { // for input node only
value = v;
}
void bp(ld lr);
};

void Neuron::bp(ld lr) {
if (fp != nullptr) fp->bp(grad * lr);
}

class DNN : public ComputationalGraph {
public:
DNN() = default;
vector<vector<Neuron *>> Layers;
void addLayer(size_t outputLength);
Neuron *addNeuron(size_t inputLength);
Neuron *addNeuron();
Neuron *addNeuron(Activation *fp);
void bp(ld lr, vector<ld> &labels);
vector<ld> eval(vector<ld> &inputs);
void training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels);
void addLayer(Activation *fp); // activation layer
};

Neuron *DNN::addNeuron() {
Neuron *nd = new Neuron(Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(Activation *fp) {
Neuron *nd = new Neuron(1, (Function *)fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(size_t inputLength) {
Neuron *nd = new Neuron(inputLength, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void DNN::addLayer(size_t outputLength) {
size_t inputLength = Layers.size() > 0 ? Layers[Layers.size() - 1].size() : 0;
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer;
if (inputLength)
lastLayer = vector<ComputeNode *>(Layers[Layers.size() - 1].begin(),
Layers[Layers.size() - 1].end());
for (size_t i = 0; i < outputLength; i++) {
Neuron *nd = inputLength != 0 ? addNeuron(inputLength) : addNeuron();
if (nd->fp != nullptr) nd->fp->initializeWeights(outputLength);
Layer.push_back(nd);
if (inputLength) bindNode(lastLayer, nd);
}
Layers.push_back(Layer);
}

void DNN::addLayer(Activation *fp) {
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer = vector<ComputeNode *>(
Layers[Layers.size() - 1].begin(), Layers[Layers.size() - 1].end());
for (size_t i = 0; i < lastLayer.size(); i++) {
Neuron *nd = addNeuron(fp->newInstance());
Layer.push_back(nd);
bindNode({lastLayer[i]}, nd);
}
Layers.push_back(Layer);
}

void DNN::bp(ld lr, vector<ld> &outputGrad) {
grad(outputGrad);
Neuron *n;
for (auto nd : Nodes) {
n = (Neuron *)nd;
n->bp(lr);
}
}

vector<ld> DNN::eval(vector<ld> &inputs) {
for (size_t i = 0; i < inputs.size(); i++) {
Layers[0][i]->input(inputs[i]);
}
return compute();
}

void DNN::training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels) {
for (size_t i = 0; i < epoch; i++) {
vector<ld> grad(outNodes.size(), 0);
for (size_t t = 0; t < inputs.size(); t++) {
vector<ld> res = eval(inputs[t]);
for (size_t j = 0; j < labels[t].size(); j++) {
grad[j] = 2 * (res[j] - labels[t][j]);
// cout << j << " " << 2 * (res[j] - labels[t][j]) << endl;
// grad[j] += 2 * (res[j] - labels[t][j]) / inputs.size();
}
bp(lr, grad);
}
// ld sum = 0;
// for (auto it : grad) sum += it;
// sum /= grad.size();
// cout << i + 1 << " " << grad[0] << endl;
// bp(lr, grad);
}
}

int main() {
// srand(time(nullptr));
// srand(42);
DNN net;
// Sgn *sgn = new Sgn;
Sigmoid *sig = new Sigmoid;
net.addLayer(2);
net.addLayer(2);
// net.addLayer(sgn);
net.addLayer(sig);
net.addLayer(1);
// net.addLayer(sgn);
net.addLayer(sig);

vector<vector<ld>> inputs = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
vector<vector<ld>> labels = {{0}, {1}, {1}, {0}};
cout << "[before training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}
vector<vector<vector<ld>>> W;
for (size_t i = 0; i < net.Layers.size(); i++) {
vector<vector<ld>> w;
if (i == 0 || i == 2 || i == 4) continue;
// if(i == 0) continue;
for (auto &node : net.Layers[i]) {
if (node->fp != nullptr) {
Liner *f = (Liner *)node->fp;
w.push_back(f->W);
}
}
W.push_back(w);
}
cout << "-----------------------------" << endl;
for (int i = 0; i < (int)W.size(); i++) {
for (int j = 0; j < (int)W[i].size(); j++) {
for (auto it : W[i][j]) {
cout << it << " ";
}
cout << endl;
}
cout << "-----------------------------" << endl;
}
net.training(0.1, 10000, inputs, labels);
cout << "[after training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}
// vector<vector<vector<ld>>>W1;
W.clear();
for (size_t i = 0; i < net.Layers.size(); i++) {
vector<vector<ld>> w;
if (i == 0 || i == 2 || i == 4) continue;
// if(i == 0) continue;
for (auto &node : net.Layers[i]) {
if (node->fp != nullptr) {
Liner *f = (Liner *)node->fp;
w.push_back(f->W);
}
}
W.push_back(w);
}
cout << "-----------------------------" << endl;
for (int i = 0; i < (int)W.size(); i++) {
for (int j = 0; j < (int)W[i].size(); j++) {
for (auto it : W[i][j]) {
cout << it << " ";
}
cout << endl;
}
cout << "-----------------------------" << endl;
}
// delete sgn;
delete sig;
return 0;
}
output-cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
[before training] --------------------
output: 0.817574 target: 0
output: 0.93354 target: 1
output: 0.899635 target: 1
output: 0.945716 target: 0
-----------------------------
1 2 0
1 2 0
-----------------------------
1 2 0
-----------------------------
[after training] --------------------
output: 0.0321611 target: 0
output: 0.971427 target: 1
output: 0.971321 target: 1
output: 0.030212 target: 0
-----------------------------
4.24897 4.25892 -6.51776
6.22279 6.27278 -2.70055
-----------------------------
-9.20646 8.56062 -3.92954
-----------------------------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import math

# 定义 sigmoid 激活函数
def sigmoid(x):
return 1 / (1 + math.exp(-x))

# 定义 sigmoid 函数的导数
def sigmoid_derivative(x):
return sigmoid(x) * (1 - sigmoid(x))

# 输入数据集
X = [[0, 0], [0, 1], [1, 0], [1, 1]]
# 输出数据集
y = [0, 1, 1, 0]

# 初始化权重为 1
syn0 = [[1, 1], [2, 2]]
syn1 = [1, 2]

# 初始化偏置为 0
b0 = [0, 0]
b1 = 0

# 学习率
learning_rate = 0.1

# 输出训练前的结果
for i in range(len(X)):
l0 = X[i]
l1_input = [0, 0]
for j in range(2):
l1_input[j] = l0[0] * syn0[0][j] + l0[1] * syn0[1][j] + b0[j]
l1 = [sigmoid(x) for x in l1_input]

l2_input = l1[0] * syn1[0] + l1[1] * syn1[1] + b1
l2 = sigmoid(l2_input)
print(f"输入: {l0}, 预测输出: {l2}")

print("-----")

print(syn0, b0)
print(syn1, b1)

print("-----")

# 训练次数
for iter in range(10000):
for i in range(len(X)):
# 前向传播
l0 = X[i]
# 计算第一层的加权和
l1_input = [0, 0]
for j in range(2):
l1_input[j] = l0[0] * syn0[0][j] + l0[1] * syn0[1][j] + b0[j]
l1 = [sigmoid(x) for x in l1_input]

# 计算第二层的加权和
l2_input = l1[0] * syn1[0] + l1[1] * syn1[1] + b1
l2 = sigmoid(l2_input)

# 计算误差
l2_error = 2 * (l2 - y[i])

# 反向传播
l2_delta = l2_error * sigmoid_derivative(l2_input)
l1_error = [l2_delta * syn1[k] for k in range(2)]
l1_delta = [l1_error[k] * sigmoid_derivative(l1_input[k]) for k in range(2)]

# 更新权重
for k in range(2):
syn1[k] -= learning_rate * l1[k] * l2_delta
for j in range(2):
syn0[j][k] -= learning_rate * l0[j] * l1_delta[k]

# 更新偏置
b1 -= learning_rate * l2_delta
for k in range(2):
b0[k] -= learning_rate * l1_delta[k]

# 输出训练后的结果
for i in range(len(X)):
l0 = X[i]
l1_input = [0, 0]
for j in range(2):
l1_input[j] = l0[0] * syn0[0][j] + l0[1] * syn0[1][j] + b0[j]
l1 = [sigmoid(x) for x in l1_input]

l2_input = l1[0] * syn1[0] + l1[1] * syn1[1] + b1
l2 = sigmoid(l2_input)
print(f"输入: {l0}, 预测输出: {l2}")

print("-----")

print(syn0, b0)
print(syn1, b1)

output-python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
输入: [0, 0], 预测输出: 0.8175744761936437
输入: [0, 1], 预测输出: 0.9335404768183254
输入: [1, 0], 预测输出: 0.899635013659718
输入: [1, 1], 预测输出: 0.9457164924311116
-----
[[1, 1], [2, 2]] [0, 0]
[1, 2] 0
-----
输入: [0, 0], 预测输出: 0.03216114545991441
输入: [0, 1], 预测输出: 0.9714274383937241
输入: [1, 0], 预测输出: 0.9713208449898518
输入: [1, 1], 预测输出: 0.03021196946428554
-----
[[4.248966453859427, 6.222789573694698], [4.258917152971988, 6.2727816735983035]] [-6.517757196383422, -2.700554991982005]
[-9.206458188124406, 8.560618703440802] -3.929539465326751

UPDD

还是两层Leaky ReLU吧(悲

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using ll = long long;

class Function {
public:
virtual ld exec(vector<ld> &inputs) = 0;
virtual vector<ld> grad(vector<ld> &inputs) = 0;
virtual ~Function() = default;
virtual void bp(ld grad) {};
virtual void initializeWeights(size_t outputLength) = 0;
};

class ComputeNode {
public:
size_t inputLength = 0;
ld value = 0;
vector<ld> pfpx;
vector<ComputeNode *> nextNodes;
vector<ComputeNode *> operands;
Function *fp = nullptr;
size_t id = 999;
ld grad = 0;
ComputeNode(size_t _inputLength, Function *_fp, size_t _id)
: inputLength(_inputLength), fp(_fp), id(_id) {}
ComputeNode(ld val, size_t _id) : value(val), id(_id) {};
virtual ~ComputeNode() {
if (fp != nullptr) delete fp;
};
virtual ld compute();
};

ld ComputeNode::compute() {
if (inputLength == 0) return value;
vector<ld> inputs;
for (size_t i = 0; i < inputLength; i++) {
inputs.push_back(operands[i]->value);
}
value = fp->exec(inputs);
pfpx = fp->grad(inputs);
return value;
}

class ComputationalGraph {
public:
vector<ComputeNode *> Nodes;
vector<ComputeNode *> outNodes;
vector<ComputeNode *> inNodes;
vector<ComputeNode *> topo_forward;
vector<ComputeNode *> topo_backward;
ComputationalGraph() = default;
ComputeNode *addNode(size_t inputLength, Function *fp);
ComputeNode *addNode(ld value);
void bindNode(vector<ComputeNode *> ops, ComputeNode *ComputeNodePtr);
vector<ld> compute();
vector<ld> grad();
vector<ld> grad(vector<ld> &outputGrad);
void clearGrad() {
for (auto nd : Nodes) nd->grad = 0;
}
virtual ~ComputationalGraph() {
for (auto &it : Nodes) delete it;
}
};

ComputeNode *ComputationalGraph::addNode(size_t inputLength, Function *fp) {
ComputeNode *nd = new ComputeNode(inputLength, fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

ComputeNode *ComputationalGraph::addNode(ld value) {
ComputeNode *nd = new ComputeNode(value, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void ComputationalGraph::bindNode(vector<ComputeNode *> ops,
ComputeNode *ComputeNodePtr) {
for (auto nd : ops) {
ComputeNodePtr->operands.push_back(nd);
nd->nextNodes.push_back(ComputeNodePtr);
}
}

vector<ld> ComputationalGraph::compute() {
if (!topo_forward.size()) {
map<ComputeNode *, ll> indegree;
bool flag = false;
for (auto nd : Nodes) {
for (auto nnd : nd->nextNodes) {
indegree[nnd]++;
}
}
if (outNodes.size() != 0) flag = true;
queue<ComputeNode *> q;
if (inNodes.size() == 0) {
for (auto nd : Nodes)
if (indegree[nd] == 0) inNodes.push_back(nd);
sort(inNodes.begin(), inNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
for (auto nd : inNodes) q.push(nd);
while (!q.empty()) {
auto nd = q.front();
q.pop();
topo_forward.push_back(nd);
for (auto nnd : nd->nextNodes) {
--indegree[nnd];
if (indegree[nnd] == 0) q.push(nnd);
}
if (nd->nextNodes.size() == 0 && !flag) {
outNodes.push_back(nd);
}
}
if (!flag) {
sort(outNodes.begin(), outNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
topo_backward = topo_forward;
reverse(topo_backward.begin(), topo_backward.end());
}
for (auto nd : topo_forward) {
nd->compute();
}
vector<ld> res;
for (auto nd : outNodes) {
res.push_back(nd->value);
}
return res;
}

vector<ld> ComputationalGraph::grad(vector<ld> &outputGrad) {
clearGrad();
for (size_t i = 0; i < outNodes.size(); i++)
outNodes[i]->grad = outputGrad[i];
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

vector<ld> ComputationalGraph::grad() {
clearGrad();
for (auto nd : outNodes) nd->grad = 1;
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

class Linear : public Function {
public:
vector<ld> W;
vector<ld> _inputs;
Linear(size_t inputLength) {
for (size_t i = 0; i <= inputLength; i++) {
// W.push_back(ld(rand()) / RAND_MAX);
W.push_back(1 + i);
}
}
void initializeWeights(size_t outputLength) {
ld bound_weight = 1.0 / sqrt(W.size());
for (auto &it : W) {
ld rand_num = (ld)rand() / RAND_MAX * 2 * bound_weight - bound_weight;
it = rand_num;
}
// W[W.size() - 1] = 0.0; // zero for bias
}
ld exec(vector<ld> &inputs) {
_inputs = inputs;
_inputs.push_back(1); // for bias, extra input unit 1
ld res = 0;
for (size_t i = 0; i < W.size(); i++) {
res += _inputs[i] * W[i];
}
return res;
}
vector<ld> grad(vector<ld> &inputs) {
vector<ld> d;
for (size_t i = 0; i < inputs.size(); i++) {
d.push_back(W[i]);
}
return d;
}
void bp(ld grad) {
for (size_t i = 0; i < W.size(); i++) {
W[i] -= grad * _inputs[i];
}
}
};

class Activation : Function {
public:
ld input;
Activation() = default;
void bp(ld grad) {}
void initializeWeights(size_t outputLength) {}
virtual Activation *newInstance() = 0;
};

class Sigmoid : public Activation {
public:
Sigmoid() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 1.0 / (1 + exp(-input));
}
vector<ld> grad(vector<ld> &inputs) {
return {exec(inputs) * (1 - exec(inputs))};
}
Sigmoid *newInstance() { return new Sigmoid; }
};

class Sgn : public Activation {
public:
Sgn() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 2.0 / (1 + exp(-input)) - 1;
}
vector<ld> grad(vector<ld> &inputs) {
return {2 * exp(-inputs[0]) /
(2 * exp(-inputs[0]) + (exp(-inputs[0]) * exp(-inputs[0])) + 1)};
}
Sgn *newInstance() { return new Sgn; }
};

class LeakyReLU : public Activation {
public:
LeakyReLU() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return input > 0 ? input : -1 / 5.5 * input;
}
vector<ld> grad(vector<ld> &inputs) {
return {ld(inputs[0] >= 0 ? 1 : -1 / 5.5)};
}
LeakyReLU *newInstance() { return new LeakyReLU; }
};

class ReLU : public Activation {
public:
ReLU() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return input > 0 ? input : 0;
}
vector<ld> grad(vector<ld> &inputs) { return {ld(inputs[0] >= 0 ? 1 : 0)}; }
ReLU *newInstance() { return new ReLU; }
};

class Neuron : public ComputeNode {
public:
Neuron(size_t inputLength, size_t id)
: ComputeNode(inputLength, new Linear(inputLength), id) {};
Neuron(size_t inputLength, Function *fp, size_t id)
: ComputeNode(inputLength, fp, id) {};
Neuron(size_t id) : ComputeNode(0, id) {}
void input(ld v) { // for input node only
value = v;
}
void bp(ld lr);
};

void Neuron::bp(ld lr) {
if (fp != nullptr) fp->bp(grad * lr);
}

class DNN : public ComputationalGraph {
public:
DNN() = default;
vector<vector<Neuron *>> Layers;
void addLayer(size_t outputLength);
Neuron *addNeuron(size_t inputLength);
Neuron *addNeuron();
Neuron *addNeuron(Activation *fp);
void bp(ld lr, vector<ld> &labels);
vector<ld> eval(vector<ld> &inputs);
void training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels);
void addLayer(Activation *fp); // activation layer
};

Neuron *DNN::addNeuron() {
Neuron *nd = new Neuron(Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(Activation *fp) {
Neuron *nd = new Neuron(1, (Function *)fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(size_t inputLength) {
Neuron *nd = new Neuron(inputLength, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void DNN::addLayer(size_t outputLength) {
size_t inputLength = Layers.size() > 0 ? Layers[Layers.size() - 1].size() : 0;
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer;
if (inputLength)
lastLayer = vector<ComputeNode *>(Layers[Layers.size() - 1].begin(),
Layers[Layers.size() - 1].end());
for (size_t i = 0; i < outputLength; i++) {
Neuron *nd = inputLength != 0 ? addNeuron(inputLength) : addNeuron();
if (nd->fp != nullptr) nd->fp->initializeWeights(outputLength);
Layer.push_back(nd);
if (inputLength) bindNode(lastLayer, nd);
}
Layers.push_back(Layer);
}

void DNN::addLayer(Activation *fp) {
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer = vector<ComputeNode *>(
Layers[Layers.size() - 1].begin(), Layers[Layers.size() - 1].end());
for (size_t i = 0; i < lastLayer.size(); i++) {
Neuron *nd = addNeuron(fp->newInstance());
Layer.push_back(nd);
bindNode({lastLayer[i]}, nd);
}
Layers.push_back(Layer);
}

void DNN::bp(ld lr, vector<ld> &outputGrad) {
grad(outputGrad);
Neuron *n;
for (auto nd : Nodes) {
n = (Neuron *)nd;
n->bp(lr);
}
}

vector<ld> DNN::eval(vector<ld> &inputs) {
for (size_t i = 0; i < inputs.size(); i++) {
Layers[0][i]->input(inputs[i]);
}
return compute();
}

void DNN::training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels) {
for (size_t i = 0; i < epoch; i++) {
vector<ld> grad(outNodes.size(), 0);
for (size_t t = 0; t < inputs.size(); t++) {
vector<ld> res = eval(inputs[t]);
for (size_t j = 0; j < labels[t].size(); j++) {
grad[j] = 2 * (res[j] - labels[t][j]);
}
// cout << grad[0] << endl;
bp(lr, grad);
}
}
}

int main() {
srand(time(nullptr));
// srand(42);
DNN net;
LeakyReLU *relu = new LeakyReLU;
Sgn *sgn = new Sgn;
Sigmoid *sig = new Sigmoid;

net.addLayer(2);
net.addLayer(2);
// net.addLayer(sgn);
// net.addLayer(sig);
net.addLayer(relu);
net.addLayer(1);
net.addLayer(relu);
// net.addLayer(sgn);
// net.addLayer(sig);

vector<vector<ld>> inputs = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
vector<vector<ld>> labels = {{0}, {1}, {1}, {0}};
cout << "[before training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0]
<< endl;
}
net.training(0.1, 10000, inputs, labels);
cout << "[after training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0]
<< endl;
}
delete sgn;
delete sig;
delete relu;
return 0;
}

UPDDD

总算算对了,找到问题了,是bp的时候用了最后一组的输入计算grad,实际上应该将每一组的grad进行累加,最后step再修改参数

success
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#include <bits/stdc++.h>
using namespace std;
using ld = long double;
using ll = long long;
class Function {
public:
virtual ld exec(vector<ld> &inputs) = 0;
virtual vector<ld> grad(vector<ld> &inputs) = 0;
virtual ~Function() = default;
virtual void bp(ld grad) {}
virtual void step() {}
virtual void initializeWeights(size_t outputLength) = 0;
virtual vector<ld> getWeights() = 0;
virtual void clearGrad() = 0;
};

class ComputeNode {
public:
size_t inputLength = 0;
ld value = 0;
vector<ld> pfpx;
vector<ComputeNode *> nextNodes;
vector<ComputeNode *> operands;
Function *fp = nullptr;
size_t id = 999;
ld grad = 0;
ComputeNode(size_t _inputLength, Function *_fp, size_t _id)
: inputLength(_inputLength), fp(_fp), id(_id) {}
ComputeNode(ld val, size_t _id) : value(val), id(_id) {};
virtual ~ComputeNode() {
if (fp != nullptr) delete fp;
};
virtual ld compute();
virtual void clearGrad() {};
};

ld ComputeNode::compute() {
if (inputLength == 0) return value;
vector<ld> inputs;
for (size_t i = 0; i < inputLength; i++) {
inputs.push_back(operands[i]->value);
}
value = fp->exec(inputs);
pfpx = fp->grad(inputs);
return value;
}

class ComputationalGraph {
public:
vector<ComputeNode *> Nodes;
vector<ComputeNode *> outNodes;
vector<ComputeNode *> inNodes;
vector<ComputeNode *> topo_forward;
vector<ComputeNode *> topo_backward;
ComputationalGraph() = default;
ComputeNode *addNode(size_t inputLength, Function *fp);
ComputeNode *addNode(ld value);
void bindNode(vector<ComputeNode *> ops, ComputeNode *ComputeNodePtr);
vector<ld> compute();
vector<ld> grad();
vector<ld> grad(vector<ld> &outputGrad);
void clearGrad() {
for (auto nd : Nodes) nd->clearGrad();
}
virtual ~ComputationalGraph() {
for (auto &it : Nodes) delete it;
}
};

ComputeNode *ComputationalGraph::addNode(size_t inputLength, Function *fp) {
ComputeNode *nd = new ComputeNode(inputLength, fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

ComputeNode *ComputationalGraph::addNode(ld value) {
ComputeNode *nd = new ComputeNode(value, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void ComputationalGraph::bindNode(vector<ComputeNode *> ops,
ComputeNode *ComputeNodePtr) {
for (auto nd : ops) {
ComputeNodePtr->operands.push_back(nd);
nd->nextNodes.push_back(ComputeNodePtr);
}
}

vector<ld> ComputationalGraph::compute() {
if (!topo_forward.size()) {
map<ComputeNode *, ll> indegree;
bool flag = false;
for (auto nd : Nodes) {
for (auto nnd : nd->nextNodes) {
indegree[nnd]++;
}
}
if (outNodes.size() != 0) flag = true;
queue<ComputeNode *> q;
if (inNodes.size() == 0) {
for (auto nd : Nodes)
if (indegree[nd] == 0) inNodes.push_back(nd);
sort(inNodes.begin(), inNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
for (auto nd : inNodes) q.push(nd);
while (!q.empty()) {
auto nd = q.front();
q.pop();
topo_forward.push_back(nd);
for (auto nnd : nd->nextNodes) {
--indegree[nnd];
if (indegree[nnd] == 0) q.push(nnd);
}
if (nd->nextNodes.size() == 0 && !flag) {
outNodes.push_back(nd);
}
}
if (!flag) {
sort(outNodes.begin(), outNodes.end(),
[&](auto a, auto b) { return a->id < b->id; });
}
topo_backward = topo_forward;
reverse(topo_backward.begin(), topo_backward.end());
}
for (auto nd : topo_forward) {
nd->compute();
}
vector<ld> res;
for (auto nd : outNodes) {
res.push_back(nd->value);
}
return res;
}

vector<ld> ComputationalGraph::grad(vector<ld> &outputGrad) {
// clearGrad();
for (size_t i = 0; i < outNodes.size(); i++)
outNodes[i]->grad = outputGrad[i];
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

vector<ld> ComputationalGraph::grad() {
clearGrad();
for (auto nd : outNodes) nd->grad = 1;
for (auto nd : topo_backward)
for (size_t i = 0; i < nd->inputLength; i++)
nd->operands[i]->grad += nd->grad * nd->pfpx[i];
vector<ld> res;
for (auto nd : inNodes) {
res.push_back(nd->grad);
}
return res;
}

class Linear : public Function {
public:
vector<ld> W;
vector<ld> grads;
vector<ld> _inputs;
Linear(size_t inputLength) {
for (size_t i = 0; i <= inputLength; i++) {
// W.push_back(ld(rand()) / RAND_MAX);
W.push_back(1 + i);
}
}
void initializeWeights(size_t outputLength) {
// ld bound_weight = 1.0 / sqrt(W.size());
// for (auto &it : W) {
// ld rand_num = (ld)rand() / RAND_MAX * 2 * bound_weight - bound_weight;
// it = rand_num;
// }
// W[W.size() - 1] = 0.0; // zero for bias
}
ld exec(vector<ld> &inputs) {
_inputs = inputs;
_inputs.push_back(1); // for bias, extra input unit 1
ld res = 0;
for (size_t i = 0; i < W.size(); i++) {
res += _inputs[i] * W[i];
}
return res;
}
vector<ld> grad(vector<ld> &inputs) {
vector<ld> d;
for (size_t i = 0; i < inputs.size(); i++) {
d.push_back(W[i]);
}
return d;
}
void bp(ld grad) {
if (!grads.size()) grads = vector<ld>(W.size(), 0);
for (size_t i = 0; i < W.size(); i++) {
grads[i] += grad * _inputs[i];
}
}
void step() {
for (size_t i = 0; i < W.size(); i++) {
W[i] -= grads[i];
}
}
vector<ld> getWeights() { return W; }
void clearGrad() {
for (auto &it : grads) it = 0;
}
};

class Activation : Function {
public:
ld input;
Activation() = default;
void bp(ld grad) {}
void initializeWeights(size_t outputLength) {}
virtual Activation *newInstance() = 0;
vector<ld> getWeights() { return vector<ld>(); }
void clearGrad() {}
};

class Sigmoid : public Activation {
public:
Sigmoid() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 1.0 / (1 + exp(-input));
}
vector<ld> grad(vector<ld> &inputs) {
return {exec(inputs) * (1 - exec(inputs))};
}
Sigmoid *newInstance() { return new Sigmoid; }
};

class Sgn : public Activation {
public:
Sgn() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return 2.0 / (1 + exp(-input)) - 1;
}
vector<ld> grad(vector<ld> &inputs) {
return {2 * exp(-inputs[0]) /
(2 * exp(-inputs[0]) + (exp(-inputs[0]) * exp(-inputs[0])) + 1)};
}
Sgn *newInstance() { return new Sgn; }
};

class LeakyReLU : public Activation {
public:
LeakyReLU() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return input > 0 ? input : -1 / 5.5 * input;
}
vector<ld> grad(vector<ld> &inputs) {
return {ld(inputs[0] >= 0 ? 1 : -1 / 5.5)};
}
LeakyReLU *newInstance() { return new LeakyReLU; }
};

class ReLU : public Activation {
public:
ReLU() = default;
ld exec(vector<ld> &inputs) {
input = inputs[0];
return input > 0 ? input : 0;
}
vector<ld> grad(vector<ld> &inputs) { return {ld(inputs[0] >= 0 ? 1 : 0)}; }
ReLU *newInstance() { return new ReLU; }
};

class Neuron : public ComputeNode {
public:
Neuron(size_t inputLength, size_t id)
: ComputeNode(inputLength, new Linear(inputLength), id) {};
Neuron(size_t inputLength, Function *fp, size_t id)
: ComputeNode(inputLength, fp, id) {};
Neuron(size_t id) : ComputeNode(0, id) {}
void input(ld v) { // for input node only
value = v;
}
void bp(ld lr);
void step();
void clearGrad() {
grad = 0;
if (fp) fp->clearGrad();
}
};

void Neuron::bp(ld lr) {
if (fp != nullptr) fp->bp(grad * lr);
grad = 0;
}

void Neuron::step() {
if (fp) fp->step();
}

class DNN : public ComputationalGraph {
public:
DNN() = default;
vector<vector<Neuron *>> Layers;
void addLayer(size_t outputLength);
Neuron *addNeuron(size_t inputLength);
Neuron *addNeuron();
Neuron *addNeuron(Activation *fp);
void bp(ld lr, vector<ld> &labels);
vector<ld> eval(vector<ld> &inputs);
void training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels);
void addLayer(Activation *fp); // activation layer
void step();
vector<vector<vector<ld>>> getWeights();
};

Neuron *DNN::addNeuron() {
Neuron *nd = new Neuron(Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(Activation *fp) {
Neuron *nd = new Neuron(1, (Function *)fp, Nodes.size());
Nodes.push_back(nd);
return nd;
}

Neuron *DNN::addNeuron(size_t inputLength) {
Neuron *nd = new Neuron(inputLength, Nodes.size());
Nodes.push_back(nd);
return nd;
}

void DNN::addLayer(size_t outputLength) {
size_t inputLength = Layers.size() > 0 ? Layers[Layers.size() - 1].size() : 0;
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer;
if (inputLength)
lastLayer = vector<ComputeNode *>(Layers[Layers.size() - 1].begin(),
Layers[Layers.size() - 1].end());
for (size_t i = 0; i < outputLength; i++) {
Neuron *nd = inputLength != 0 ? addNeuron(inputLength) : addNeuron();
if (nd->fp != nullptr) nd->fp->initializeWeights(outputLength);
Layer.push_back(nd);
if (inputLength) bindNode(lastLayer, nd);
}
Layers.push_back(Layer);
}

void DNN::addLayer(Activation *fp) {
vector<Neuron *> Layer;
vector<ComputeNode *> lastLayer = vector<ComputeNode *>(
Layers[Layers.size() - 1].begin(), Layers[Layers.size() - 1].end());
for (size_t i = 0; i < lastLayer.size(); i++) {
Neuron *nd = addNeuron(fp->newInstance());
Layer.push_back(nd);
bindNode({lastLayer[i]}, nd);
}
Layers.push_back(Layer);
}

void DNN::bp(ld lr, vector<ld> &outputGrad) {
grad(outputGrad);
Neuron *n;
for (auto nd : Nodes) {
n = (Neuron *)nd;
n->bp(lr);
}
}

void DNN::step() {
// grad(outputGrad);
Neuron *n;
for (auto nd : Nodes) {
n = (Neuron *)nd;
n->step();
}
}

vector<ld> DNN::eval(vector<ld> &inputs) {
for (size_t i = 0; i < inputs.size(); i++) {
Layers[0][i]->input(inputs[i]);
}
return compute();
}

void DNN::training(ld lr, size_t epoch, vector<vector<ld>> &inputs,
vector<vector<ld>> &labels) {
for (size_t i = 0; i < epoch; i++) {
clearGrad();
vector<ld> grad(outNodes.size(), 0);
for (size_t t = 0; t < inputs.size(); t++) {
vector<ld> res = eval(inputs[t]);
for (size_t j = 0; j < labels[t].size(); j++) {
grad[j] = 2 * (res[j] - labels[t][j]) / inputs.size();
}
// cout << grad[0] << endl;
bp(lr, grad);
}
step();
}
}

vector<vector<vector<ld>>> DNN::getWeights() {
vector<vector<vector<ld>>> W;
for (auto &layer : Layers) {
vector<vector<ld>> w;
for (auto &node : layer) {
if (!node->fp) continue;
vector<ld> fw = node->fp->getWeights();
if (fw.size()) w.push_back(fw);
}
W.push_back(w);
}
return W;
}

int main() {
cout << fixed << setprecision(4);
srand(time(nullptr));
// srand(42);
DNN net;
LeakyReLU *relu = new LeakyReLU;
Sgn *sgn = new Sgn;
Sigmoid *sig = new Sigmoid;

net.addLayer(2);
net.addLayer(2);
// net.addLayer(sgn);
net.addLayer(sig);
// net.addLayer(relu);
net.addLayer(1);
// net.addLayer(relu);
// net.addLayer(sgn);
net.addLayer(sig);

vector<vector<ld>> inputs = {{1, 1}, {0, 0}, {0, 1}, {1, 0}};
vector<vector<ld>> labels = {{0}, {0}, {1}, {1}};
cout << "[before training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}

vector<vector<vector<ld>>> W = net.getWeights();
for (auto &layer : W) {
for (auto &node : layer) {
for (auto &w : node) {
cout << w << " ";
}
cout << endl;
}
cout << "---------------------" << endl;
}

net.training(0.1, 1000, inputs, labels);
cout << "[after training] --------------------" << endl;
for (size_t i = 0; i < inputs.size(); i++) {
vector<ld> res = net.eval(inputs[i]);
cout << "output: " << res[0] << " target: " << labels[i][0] << endl;
}
W = net.getWeights();
for (auto &layer : W) {
for (auto &node : layer) {
for (auto &w : node) {
cout << w << " ";
}
cout << endl;
}
cout << "---------------------" << endl;
}

delete sgn;
delete sig;
delete relu;
return 0;
}