1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
| #include <bits/stdc++.h> using namespace std;
class DecisionTree { public: vector<DecisionTree *> leaves; string name; DecisionTree(string n) : name(n) {} };
DecisionTree *createTree(string name, vector<vector<string>> dataset, vector<string> tags, size_t label_id, size_t attribute_count) { double E_tar = 0.0; double p_i; unordered_map<string, size_t> label_type_cnt; DecisionTree *tr = new DecisionTree(name); for (auto &record : dataset) { label_type_cnt[record[label_id]]++; } cout << "--------------------------------------------------------------------------" << endl; cout << "[" << name << "] Entropy:"; for (auto &[label, freq] : label_type_cnt) { p_i = freq / (double)dataset.size(); cout << " -" << p_i << " * log2(" << p_i << ")"; E_tar += -p_i * log2(p_i); } cout << " = " << E_tar << endl; vector<double> E_A(attribute_count, 0.0); vector<double> G_A(attribute_count, 0.0); double gain_max = -1; int gain_max_attribute_id = -1; for (size_t attribute_id = 0; attribute_id < attribute_count; attribute_id++) { unordered_map<string, map<string, int>> attribute_types_label_types_cnt; for (auto &record : dataset) { attribute_types_label_types_cnt[record[attribute_id]][record[label_id]]++; } cout << "[" << tags[attribute_id] << "] -------------------- " << endl; for (auto &[attribute_value, ltc] : attribute_types_label_types_cnt) { double E = 0; int attribute_value_cnt = 0; for (auto &[label, freq] : ltc) { attribute_value_cnt += freq; } cout << " " << attribute_value << " P: " << (attribute_value_cnt / (double)dataset.size()) << " E: "; for (auto &[label, freq] : ltc) { p_i = freq / (double)attribute_value_cnt; cout << " -" << p_i << " * log2(" << p_i << ")"; E += -p_i * log2(p_i); } cout << " = " << E << endl; E_A[attribute_id] += (attribute_value_cnt / (double)dataset.size()) * E; } G_A[attribute_id] = E_tar - E_A[attribute_id]; if (G_A[attribute_id] > gain_max) gain_max = G_A[attribute_id], gain_max_attribute_id = attribute_id; cout << " " << "E: " << E_A[attribute_id] << " G: " << G_A[attribute_id] << endl; cout << "[" << tags[attribute_id] << "] -------------------- " << endl; } cout << "max: " << tags[gain_max_attribute_id] << " " << gain_max << endl;
DecisionTree *leaf = new DecisionTree(tags[gain_max_attribute_id]); unordered_map<string, vector<vector<string>>> attribute_datesets; tr->leaves.push_back(leaf);
vector<string> newTags = tags; newTags.erase(newTags.begin() + gain_max_attribute_id); for (auto &record : dataset) { vector<string> newRecord = record; newRecord.erase(newRecord.begin() + gain_max_attribute_id); attribute_datesets[record[gain_max_attribute_id]].push_back(newRecord); }
for (auto &[attribute_value, newDataset] : attribute_datesets) { unordered_set<string> attribute_labels; DecisionTree *trr = new DecisionTree(attribute_value); for (auto &record : newDataset) { attribute_labels.emplace(record[label_id - 1]); } if (newDataset.size() > 1 && attribute_labels.size() > 1) { leaf->leaves.push_back( createTree(attribute_value, newDataset, newTags, label_id - 1, attribute_count - 1)); } else { for (auto &label : attribute_labels) { trr->leaves.push_back(new DecisionTree(label)); } leaf->leaves.push_back(trr); } } return tr; }
int main() { cout << fixed << setprecision(3); vector<string> tags = {"age", "income", "credit", "debt", "loan"}; vector<vector<string>> dataset = { {"Young", "Low", "Fair", "High", "No"}, {"Young", "Low", "Good", "High", "No"}, {"Middle", "Low", "Good", "High", "Yes"}, {"Old", "Medium", "Good", "High", "Yes"}, {"Old", "High", "Fair", "Low", "Yes"}, {"Old", "High", "Good", "Low", "Yes"}, {"Middle", "High", "Good", "Low", "Yes"}, {"Young", "Medium", "Fair", "High", "No"}, {"Young", "High", "Good", "Low", "Yes"}, {"Old", "Medium", "Fair", "Low", "Yes"}, {"Young", "Medium", "Good", "High", "Yes"}, {"Middle", "Medium", "Poor", "High", "No"}, }; const size_t label_id = 4; const size_t attribute_count = 4; DecisionTree *tr = createTree("Loan", dataset, tags, label_id, attribute_count); cout << endl; queue<tuple<int, DecisionTree *>> q; q.push({0, tr}); int last_layer = 0; while (!q.empty()) { auto [layer, tp] = q.front(); q.pop(); if (layer != last_layer) { last_layer = layer; cout << endl; } cout << tp->name << " "; for (auto &t : tp->leaves) { q.push({layer + 1, t}); } delete tp; } cout << endl; return 0; }
|